

1. If 10 capsules contain 1500 mg of amoxicillin, what would be the weight of amoxicillin contained in 75 capsules?
a) $10,500 \mathrm{mg}$
b) $11,250 \mathrm{mg}$
c) $13,750 \mathrm{mg}$
d) $17,425 \mathrm{mg}$
e) $22,500 \mathrm{mg}$

10 capsules / $1500 \mathrm{mg}=75$ capsules $/ \mathrm{x}$

1. If 10 capsules contain 1500 mg of amoxicillin, what would be the weight of amoxicillin contained in 75 capsules?
a) $10,500 \mathrm{mg}$
b) $11,250 \mathrm{mg}$
c) $13,750 \mathrm{mg}$
d) $17,425 \mathrm{mg}$
e) $22,500 \mathrm{mg}$
2. Your patient has MRSA pneumonia and you recommend targeting a vancomycin trough concentration of $15 \mathrm{mcg} / \mathrm{mL}$.
Express this value in terms of $\mathrm{mg} / \mathrm{dL}$.
3. $0.015 \mathrm{mg} / \mathrm{dL}$
4. $0.15 \mathrm{mg} / \mathrm{dL}$
5. $1.5 \mathrm{mg} / \mathrm{dL}$
6. $15 \mathrm{mg} / \mathrm{dL}$
7. $150 \mathrm{mg} / \mathrm{dL}$
8. Your patient has MRSA pneumonia and you recommend targeting a vancomycin trough concentration of $15 \mathrm{mcg} / \mathrm{mL}$.
Express this value in terms of $\mathrm{mg} / \mathrm{dL}$.
a) $0.015 \mathrm{mg} / \mathrm{dL}$
b) $0.15 \mathrm{mg} / \mathrm{dL}$
c) $1.5 \mathrm{mg} / \mathrm{dL}$
d) $15 \mathrm{mg} / \mathrm{dL}$
e) $150 \mathrm{mg} / \mathrm{dL}$
$15 \mathrm{mcg} / \mathrm{mL} \times 1 \mathrm{mg} / 1000 \mathrm{mcg} \times 100 \mathrm{~mL} / 1 \mathrm{dL}=$ $1.5 \mathrm{mg} / \mathrm{dL}$
9. How many days will a 20 mL vial of hydromorphone ($4 \mathrm{mg} / \mathrm{mL}$) last if the hospice patient is ordered to receive 2 mg PO q4h ATC?
a) 3
b) 4
c) 5
d) 6
e) 7
10. How many days will a 20 mL vial of hydromorphone ($4 \mathrm{mg} / \mathrm{mL}$) last if the hospice patient is ordered to receive 2 mg POq 4 h ATC?
a) 3
b) 4
c) 5
d) 6
e) 7
$20 \mathrm{~mL} \times 4 \mathrm{mg} / \mathrm{mL}=80 \mathrm{mg}$
Needed: $2 \mathrm{mg} \times 6$ doses/day $=12 \mathrm{mg} /$ day $80 \mathrm{mg} \div 12 \mathrm{mg} / \mathrm{day}=6.67$ days (6 days)
11. How many fluid ounces are contained in 5 quarts?
a) 0.16 fluid ounces
b) 1.6 fluid ounces
c) 16 fluid ounces
d) 160 fluid ounces
e) 1600 fluid ounces
12. How many fluid ounces are contained in 5 quarts?
a) 0.16 fluid ounces
b) 1.6 fluid ounces
c) 16 fluid ounces $\quad 30 \mathrm{~mL}=1$ fluid ounce

d) 160 fluid ounces

e) 1600 fluid ounces

5 quarts $\times 946 \mathrm{~mL} / 1$ quart $=4730 \mathrm{~mL}$
1 fl . Oz/30 mL $=x / 4730 \mathrm{~mL}=157.7$ fluid oz
5. If a prescription calls for $5 \mathrm{mg} / \mathrm{kg}$ and the patient weights 165 lbs., what is the dose to be delivered for this patient?
a) 75 mg
b) 185 mg
c) 227 mg
d) 375 mg
e) 412 mg
5. If a prescription calls for $5 \mathrm{mg} / \mathrm{kg}$ and the patient weights 165 lbs., what is the dose to be delivered for this patient?
a) 75 mg
b) 185 mg
c) 227 mg
$1 \mathrm{Kg}=2.2 \mathrm{lbs}$
d) 375 mg
e) 412 mg
$165 \mathrm{lbs} / \mathrm{x}=2.2 \mathrm{lbs} / 1 \mathrm{~kg}$
$\mathrm{X}=75 \mathrm{~kg}$
$5 \mathrm{mg} / \mathrm{kg} \times 75 \mathrm{~kg}=375 \mathrm{mg}$
6. If a prescription calls for 2 tablespoons per day, how many milliliters are required for a 30-day supply?
a) 50 mL
b) 90 mL
c) 500 mL
d) 850 mL
e) 900 mL
6. If a prescription calls for 2 tablespoons per day, how many milliliters are required for a 30day supply?
a) 50 mL
b) $90 \mathrm{~mL} \quad 1$ tablespoon $=15 \mathrm{~mL}$
c) 500 mL
d) 850 mL
e) 900 mL

1 tblsp / $30 \mathrm{~mL}=2$ tblsp $/ \mathrm{x}$
$\mathrm{X}=60 \mathrm{~mL}$
$60 \mathrm{~mL} /$ day $\times 30$ days $=900 \mathrm{~mL}$
7. An IV solution contains 250 mg of levofloxacin in 50 mL D5W. How many liters of D5W would contain 5 g of levofloxacin?
a) 0.1
b) 0.5
c) 1
d) 2
e) 10
7. An IV solution contains 250 mg of levofloxacin in 50 mL D5W. How many liters of D5W would contain 5 g of levofloxacin?
a) 0.1
b) 0.5
c) 1

CLUE: The answer is in
front of you! Set up ratios and see which ones match!
d) 2
e) 10
$5 \mathrm{gm} \times 1000 \mathrm{mg} / 1 \mathrm{gm} \times 50 \mathrm{~mL} / 250 \mathrm{mg} \times 1 \mathrm{~L} / 1000 \mathrm{mg}$
8. If a prescription calls for 5 g of sodium chloride, how many milliliters of a stock solution are needed if every 1000 mL contains 20 g ?
a) 25 mL
b) 40 mL
c) 250 mL
d) 300 mL
e) 400 mL
8. If a prescription calls for 5 g of sodium chloride, how many milliliters of a stock solution are needed if every 1000 mL contains 20 g ?
a) 25 mL
b) 40 mL
c) 250 mL
d) 300 mL
e) 400 mL
$20 \mathrm{gm} / 1000 \mathrm{~mL}=5 \mathrm{gm} / \mathrm{x}$
9. What is the minimum amount of a potent drug that may be weighed on a prescription balance with a sensitivity requirement of 6 mg if at least 95\% accuracy is required?
a) 6 mg
b) 120 mg
c) 180 mg
d) 200 mg
e) 300 mg
9. What is the minimum amount of a potent drug that may be weighed on a prescription balance with a sensitivity requirement of 6 mg if at least 95% accuracy is required?
a) 6 mg
b) 120 mg
c) 180 mg
d) 200 mg
e) 300 mg

Minimum weighable quantity $=$ sensitivity requirement x 100 / \%error
$6 \mathrm{mg} \times 100 / 5 \%=120 \mathrm{mg}$
10. Calculate the dose of a drug to be administered to a patient if the dosing regimen is listed as $7 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. The patient weighs 140 lb .
a) 65 mg
b) 125 mg
c) 315 mg
d) 420 mg
e) 450 mg
10. Calculate the dose of a drug to be administered to a patient if the dosing regimen is listed as $7 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$. The patient weighs 140 lb .
a) 65 mg
b) 125 mg
c) 315 mg
d) 420 mg
e) 450 mg
$1 \mathrm{Kg} / 2.2 \mathrm{lb}=\mathrm{x} / 140 \mathrm{lb}$
$\mathrm{X}=64 \mathrm{Kg}$
$7 \times 64=448 \mathrm{mg}$
11. What is the ideal body weight for a female patient whose height is 5 ft 8 in ?
a) 53 kg
b) 64 kg
c) 68 kg
d) 121 lb
e) 150 lb
11. What is the ideal body weight for a female patient whose height is 5 ft 8 in ?
a) 53 kg
b) 64 kg
c) 68 kg
d) 121 lb
e) 150 lb

Women $-\mathrm{IBW}=45.5+(2.3 \mathrm{x}$ inches over 5 ft$)$
Men - IBW $=50+(2.3 \times$ inches over 5 ft$)$
IBW $=45.5+(2.3 \times 8)=64 \mathrm{Kg}$
12. A patient weighing 175 lb is to receive an initial daily IM dosage of procainamide $\mathrm{HCl}(500$ $\mathrm{mg} / \mathrm{mL}$ vial) of $50 \mathrm{mg} / \mathrm{kg}$ based on actual body weight to be given in divided doses every 3 hours. How many milliliters should each injection contain?
a) 0.49 mL
b) 0.99 mL
c) 1.87 mL
d) 3.98 mL
e) 8.23 mL
12. A patient weighing 175 lb is to receive an initial daily IM dosage of procainamide $\mathrm{HCl}(500 \mathrm{mg} / \mathrm{mL}$ vial) of 50 $\mathrm{mg} / \mathrm{kg}$ based on actual body weight to be given in divided doses every 3 hours. How many milliliters should each injection contain?
a) 0.49 mL
b) 0.99 mL
c) 1.87 mL
d) 3.98 mL
e) 8.23 mL
$175 \mathrm{lb} / \mathrm{x}=2.2 \mathrm{lb} / 1 \mathrm{~kg}$
$\mathrm{X}=79.5 \mathrm{~kg}$
$50 \mathrm{mg} / \mathrm{kg} \times 79.5 \mathrm{~kg}=3977 \mathrm{mg}$
$3977 \mathrm{mg} / 8$ doses per day $=497 \mathrm{mg} /$ dose
$497 \mathrm{mg} / \mathrm{x}=500 \mathrm{mg} / 1 \mathrm{~mL}$
$\mathrm{X}=0.99 \mathrm{~mL}$
13. What is the creatinine clearance for a 65 year old female patient who weighs 110 lb and has a serum creatinine of 1.3 $\mathrm{mg} / \mathrm{dL}$?
a) $26 \mathrm{~mL} / \mathrm{min}$
b) $34 \mathrm{~mL} / \mathrm{min}$
c) $40 \mathrm{~mL} / \mathrm{min}$
d) $82 \mathrm{~mL} / \mathrm{min}$
e) $100 \mathrm{~mL} / \mathrm{min}$
13. What is the creatinine clearance for a 65 year old female patient who weighs 110 lb and has a serum creatinine of $1.3 \mathrm{mg} / \mathrm{dL}$?
a) $26 \mathrm{~mL} / \mathrm{min}$
b) $34 \mathrm{~mL} / \mathrm{min}$
c) $40 \mathrm{~mL} / \mathrm{min}$
d) $82 \mathrm{~mL} / \mathrm{min}$
e) $100 \mathrm{~mL} / \mathrm{min}$
$\mathrm{CrCl}=\{[(140-65) \times 50 \mathrm{~kg}] /(72 \times 1.3)\} \times 0.85$
14. What volume of a 5% dextrose solution should be mixed with 200 mL of a 20% dextrose solution to prepare 300 mL of a 15% dextrose solution?
a) 50 mL
b) 100 mL
c) 150 mL
d) 200 mL
e) 250 mL
14. What volume of a 5% dextrose solution should be mixed with 200 mL of a 20% dextrose solution to prepare 300 mL of a 15% dextrose solution?
a) 50 mL
b) 100 mL
c) 150 mL
d) 200 mL
e) 250 mL

15. What is the final concentration obtained by mixing 200 mL of 20% dextrose with 100 mL of 5% dextrose?
a) 7.5%
b) 10%
c) 12.5%
d) 15%
e) 17.5%
15. What is the final concentration obtained by mixing 200 mL of 20% dextrose with 100 mL of 5% dextrose?
a) 7.5%
b) 10%
c) 12.5%
d) 15%
e) 17.5%

Two parts: solute and solvent - keep both totals in mind! Solvent $=200 \mathrm{~mL}+100 \mathrm{~mL}=300 \mathrm{~mL}$
Solute $=x / 200 \mathrm{~mL}=20 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{x}=40 \mathrm{gm}$
$\mathrm{X} / 100 \mathrm{~mL}=5 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{x}=5 \mathrm{gm}$
Solute $=45 \mathrm{gm}$
Therefore $45 \mathrm{gm} / 300 \mathrm{~mL}=\mathrm{x} / 100 \mathrm{~mL}$
$X=15 \%$
16. You receive a prescription for prednisone 10 mg tablets with the instructions "Take 20 mg po once daily x 3 days, 10 mg po once daily x 3 days, 5 mg po once daily $\times 3$ days". Calculate the number of tablets to dispense to fulfill this prescription.
a) 9
b) 10
c) 11
d) 12
e) 13
16. You receive a prescription for prednisone 10 mg tablets with the instructions "Take 20 mg po once daily $x 3$ days, 10 mg po once daily $x 3$ days, 5 mg po once daily x 3 days". Calculate the number of tablets to dispense to fulfill this prescription.
a) 9
b) 10
c) 11
d) 12
e) 13

Step $1=2$ tablets $\times 3$ days $=6$ tablets
Step $2=1$ tablet $\times 3$ days $=3$ tablets
Step $3=1 / 2$ tablet $\times 3$ days $=2$ tablets
Total $=11$ tablets
17. How many mL of a 3% solution can be made from 27 g of drug?
a) 600 mL
b) 700 mL
c) 800 mL
d) 900 mL
e) 1000 mL
17. How many mL of a 3% solution can be made from 27 g of drug?
a) 600 mL
b) 700 mL
c) 800 mL
d) 900 mL
e) 1000 mL
$27 \mathrm{gm} / \mathrm{x}=3 \mathrm{gm} / 100 \mathrm{~mL}$
18. A nurse calls the pharmacy and asks for help determining how much heparin a patient is receiving. The patient weighs 78 kg and the heparin solution (25,000 units $/ 500 \mathrm{~mL}$ D5W) is running at a rate of $22.4 \mathrm{~mL} / \mathrm{hr}$. How many units $/ \mathrm{kg} / \mathrm{hr}$ is the patient currently receiving?
a) 13.2
b) 14.3
c) 15.4
d) 16.7
e) 17.1
18. A nurse calls the pharmacy and asks for help determining how much heparin a patient is receiving. The patient weighs 78 kg and the heparin solution (25,000 units $/ 500 \mathrm{~mL} \mathrm{D5W}$) is running at a rate of $22.4 \mathrm{~mL} / \mathrm{hr}$. How many units $/ \mathrm{kg} / \mathrm{hr}$ is the patient currently receiving? a) 13.2
b) 14.3
c) 15.4
d) 16.7
e) 17.1

25,000 units $/ 500 \mathrm{~mL}=50$ units $/ \mathrm{mL}$
50 units / mL x $22.4 \mathrm{~mL} / \mathrm{hr}=1120$ units / hr
1120 units $/ 78 \mathrm{~kg}=14.3$ units $/ \mathrm{kg} / \mathrm{hr}$
19. An ICU medical order reads " KCl 40 mEq in 1 L NS. Infuse at $0.5 \mathrm{mEq} / \mathrm{min}$." How many minutes will this bottle last on the patient?
a) 20
b) 80
c) 500
d) 1000
e) 2000
19. An ICU medical order reads " KCl 40 mEq in 1 L NS. Infuse at $0.5 \mathrm{mEq} / \mathrm{min}$." How many minutes will this bottle last on the patient?
a) 20
b) 80
c) 500
d) 1000
e) 2000
$1000 \mathrm{~mL} / 40 \mathrm{mEq} \times 0.5 \mathrm{mEq} / \mathrm{min}=12.5 \mathrm{ml} / \mathrm{min}$ $1000 \mathrm{~mL} / 12.5 \mathrm{~mL}=80$ minutes
20. Using the formula below, how much zinc oxide would be required to make 750 g of the mixture?
> Zinc oxide 150 g
> Starch 250 g
> Petrolatum 550 g
> Coal tar 50 g
a) 38 g
b) 113 g
C) 188 g
d) 200 g
e) 413 g
20. Using the formula below, how much zinc oxide would be required to make 750 g of the mixture?
> Zinc oxide 150 g
> Starch 250 g
> Petrolatum 550 g
> Coal tar 50 g
a) 38 g
b) 113 g
c) 188 g
d) 200 g
e) 413 g

Total weight $=150+250+550+50=1000 \mathrm{gm}$
150 gm zinc $/ 1000 \mathrm{gm}$ total $=\mathrm{x} / 750 \mathrm{gm}$ total
21. What is the weight of 500 mL of a liquid whose specific gravity is $1.13 ?$
a) 442 mg
b) 885 mg
c) 221 g
d) 442 g
e) 565 g

Specific Gravity

Ratio

- Weight of substance : Weight of standard substance
- Weight of 10 mL of sulfuric acid

Weight of 10 mL of water

- $18 \mathrm{gm} / 10 \mathrm{gm}=1.8$

22. What weight of hydrocortisone should be used to prepare 20 g of an ointment containing hydrocortisone at a concentration of 1:400?
a) 5 mg
b) 25 mg
c) 50 mg
d) 75 mg
e) 80 mg
23. What is the weight of 500 mL of a liquid whose specific gravity is 1.13 ?
a) 442 mg
b) 885 mg
c) 221 g
d) 442 g
e) 565 g

Weight of 500 mL of liquid
Weight of 500 mL of water
$=X / 500 \mathrm{~g}=1.13$
$\mathrm{X}=565 \mathrm{~g}$
22. What weight of hydrocortisone should be used to prepare 20 g of an ointment containing hydrocortisone at a concentration of 1:400?
a) 5 mg
b) 25 mg
c) 50 mg
d) 75 mg
e) 80 mg
$1 / 400=x / 20 \mathrm{~g}$
$\mathrm{X}=0.05 \mathrm{~g}=50 \mathrm{mg}$
23. Convert $104^{\circ} \mathrm{F}$ to centigrade
a) $22^{\circ} \mathrm{C}$
b) $34^{\circ} \mathrm{C}$
c) $40^{\circ} \mathrm{C}$
d) $46^{\circ} \mathrm{C}$
e) $50^{\circ} \mathrm{C}$
23. Convert $104^{\circ} \mathrm{F}$ to centigrade.
a) $22^{\circ} \mathrm{C}$
b) $34^{\circ} \mathrm{C}$
c) $40^{\circ} \mathrm{C}$
d) $46^{\circ} \mathrm{C}$
e) $50^{\circ} \mathrm{C}$
$C=[(104-32) / 9] \times 5$
24. A patient is to receive an infusion of 2 g of lidocaine in 500 mL D5W at a rate of 2 $\mathrm{mg} / \mathrm{min}$. What is the flow rate in milliliters per hour?
a) 2
b) 6.5
c) 15
d) 30
e) 150
24. A patient is to receive an infusion of 2 g of lidocaine in 500 mL D5W at a rate of $2 \mathrm{mg} / \mathrm{min}$. What is the flow rate in milliliters per hour?
a) 2
b) 6.5
c) 15
d) 30
e) 150
$\frac{500 \mathrm{~mL}}{2 \mathrm{gm}} \times \quad \frac{1 \mathrm{gm} \times}{1000 \mathrm{mg}} \quad \frac{2 \mathrm{mg} \times}{1 \mathrm{~min}} \quad \frac{60 \mathrm{~min}}{1 \mathrm{hr}}$
25. A prescription calls for tobramycin 0.3% with the directions " 1 gtt OU TID". How many mg of tobramycin will be used per day? Assume that the dropper is calibrated to deliver 20 drops per mL.
a) 9 mg
b) 0.9 mg
c) 0.009 mg
d) 0.0009 mg
e) 0.00009 mg
25. A prescription calls for tobramycin 0.3% with the directions " 1 gtt OU TID". How many mg of tobramycin will be used per day? Assume that the dropper is calibrated to deliver 20 drops per mL .
a) 9 mg
b) 0.9 mg
c) 0.009 mg
d) 0.0009 mg
e) 0.00009 mg

1 gtt OU TID $=6 \mathrm{gtt}$'s per day
$20 \mathrm{gtt} / 1 \mathrm{~mL}=6 \mathrm{gtt} / \mathrm{x} ; \mathrm{x}=0.3 \mathrm{~mL}$ used per day
$0.3 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{x} / 0.3 \mathrm{~mL}$
$\mathrm{X}=0.0009 \mathrm{gm}=0.9 \mathrm{mg}$
26. The infusion rate of theophylline established for an infant is $0.08 \mathrm{mg} / \mathrm{kg} / \mathrm{h}$. How many mg of theophylline are needed for a 12-hour infusion bottle if the infant weighs 16 lbs ?
a) 0.58 mg
b) 7 mg
c) 14 mg
d) 30 mg
e) 150 mg
26. The infusion rate of theophylline established for an infant is $0.08 \mathrm{mg} / \mathrm{kg} / \mathrm{h}$. How many mg of theophylline are needed for a 12-hour infusion bottle if the infant weighs 16 lbs ?
a) 0.58 mg
b) 7 mg
c) 14 mg
d) 30 mg
e) 150 mg
$16 \mathrm{lb}=7.3 \mathrm{~kg}$
$0.08 \times 7.3=0.584 \mathrm{mg} / \mathrm{hr}$
$0.584 \mathrm{mg} \times 12$ hours $=7 \mathrm{mg}$
27. There are 5.86 g of potassium chloride (KCl) in a 250 mL infusion bag. How many milliequivalents (mEq) of KCl are present (molecular weight $\mathrm{KCl}=74.6$)?
a) 12.7
b) 20
c) 78.5
d) 150
e) 157

Millequivalents

> The "combining power" of a substance relative to 1 mg of hydrogen
$>1 \mathrm{mEq}=$

- 1 mg hydrogen
- 20 mg calcium
- 23 mg sodium
$>m E q=(\mathrm{mg} \times$ valence $)$
atomic, molecular, or formula weight

Stoklosa MJ, Ansel HC. Pharmaceutical Calculations. $10^{\text {th }}$ Ed. Media, PA: Williams \& Wilkins; 1996.
27. There are 5.86 g of potassium chloride (KCl) in a 250 mL infusion bag. How many milliequivalents (mEq) of KCl are present (molecular weight $\mathrm{KCl}=74.6$)?
a) 12.7
b) 20
c) 78.5
d) 150
e) 157

Molecular weight of $\mathrm{KCl}=74.5$
Equivalent weight of $\mathrm{KCl}=74.5$
1 mEq of $\mathrm{KCl}=1 / 1000 \times 74.5 \mathrm{gm}=0.0745 \mathrm{gm}=74.5$
mg
$5860 \mathrm{mg} / 74.5 \mathrm{mg}=78.5 \mathrm{mEq}$
28. Propylene glycol was purchased at a cost of $\$ 24.00$ per pound. What is the cost of 100 mL of the liquid (specific gravity = 1.04)?
a) $\$ 2.60$
b) $\$ 2.64$
c) $\$ 2.75$
d) $\$ 5.50$
e) $\$ 13.00$
28. Propylene glycol was purchased at a cost of $\$ 24.00$ per pound. What is the cost of 100 mL of the liquid (specific gravity $=1.04$)?
a) $\$ 2.60$
b) $\$ 2.64$
c) $\$ 2.75$
d) $\$ 5.50$
e) $\$ 13.00$

$$
\begin{aligned}
& \frac{\text { Weight of } 100 \mathrm{~mL} \text { liquid }}{\text { Weight of } 100 \mathrm{~mL} \text { water }(100 \mathrm{gm})}=1.04 \\
& \text { Weight of } 100 \mathrm{~mL} \text { liquid }=104 \mathrm{gm}
\end{aligned}
$$

$$
104
$$

gm

$$
\times \frac{2.2 \mathrm{lb}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~kg}}{\begin{array}{l}
1000 \\
\mathrm{gm}
\end{array}} \times \frac{\$ 24.00}{1 \mathrm{lb}}=
$$

29. A prescription calls for 1 lb . bacitracin ointment containing 200 Units of bacitracin per gram. How many grams of bacitracin ointment (500 Units/g) must be used to make this ointment?
a) 182 g
b) 200 g
c) 227 g
d) 362 g
e) 400 g
30. A prescription calls for 1 lb . bacitracin ointment containing 200 Units of bacitracin per gram. How many grams of bacitracin ointment (500 Units/g) must be used to make this ointment?
a) 182 g
b) 200 g
c) 227 g
d) 362 g
e) 400 g
$1 \mathrm{lb} \times \frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}} \times \frac{1000 \mathrm{gm}}{1 \mathrm{~kg}} \times \frac{\begin{array}{l}200 \\ \text { units } \\ 10,909 \mathrm{units} / \mathrm{xm} \\ \mathrm{X}=182 \mathrm{gm}\end{array}}{\substack{100 \text { units } / 1 \mathrm{gm}}}=\begin{gathered}90,909 \\ \text { units }\end{gathered}$
31. A total parenteral nutrition order requires 500 mL of D30W. How many mL of D50W should be used if D30W is not available?
a) 125 mL
b) 200 mL
c) 300 mL
d) 375 mL
e) 400 mL

Need:
$\mathrm{X} / 500 \mathrm{~mL}=30 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{x}=150 \mathrm{gm}$
$150 \mathrm{gm} / \mathrm{x}=50 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{x}=300 \mathrm{~mL}$
30. A total parenteral nutrition order requires 500 mL of D30W. How many mL of D50W should be used if D30W is not available?
a) 125 mL
b) 200 mL
c) 300 mL
d) 375 mL
e) 400 mL
31. How many grams of 1% hydrocortisone cream must be mixed with 0.5% hydrocortisone cream if the pharmacist wishes to prepare 60 g of a $0.8 \% \mathrm{w} / \mathrm{w}$ preparation?
a) 6 g
b) 12 g
c) 24 g
d) 36 g
e) 48 g
31. How many grams of 1% hydrocortisone cream must be mixed with 0.5% hydrocortisone cream if the pharmacist wishes to prepare 60 g of a $0.8 \% \mathrm{w} / \mathrm{w}$ preparation?
a) $\quad 6 \mathrm{~g}$
d) 36 g
e) 48 g

0.3 parts/ 0.5 parts total $=x / 60 \mathrm{gm}$
$X=36 \mathrm{gm}$ of 1% cream
32. A solution is to be administered by IV infusion at a rate of $55 \mathrm{~mL} / \mathrm{hr}$. How many drops/minute should be infused if $1 \mathrm{~mL}=$ 20 drops?
a) 15.4
b) 16.5
c) 17.8
d) 18.3
e) 19.1

> 32. A solution is to be administered by IV infusion at a rate of $55 \mathrm{~mL} / \mathrm{hr}$. How many drops/minute should be infused if $1 \mathrm{~mL}=$ 20 drops?
> a) 15.4
> b) 16.5
> c) 17.8
> d) 18.3
> e) 19.1
33. How many milligrams of sodium chloride are needed to adjust 30 mL of a 4% cocaine HCl solution to isotonicity. The freezing point depression of a 1% solution of cocaine HCl is $0.09^{\circ} \mathrm{C}$.
a) 62
b) 83
c) 108
d) 120
e) 270
$1 \% / 0.09=4 \% / x ; x=0.36^{\circ} \mathrm{C}$
Isotonic solutions have a reduction in freezing points to $0.52^{\circ} \mathrm{C}$
$0.52^{\circ} \mathrm{C}-0.36^{\circ} \mathrm{C}=0.16^{\circ} \mathrm{C}$
$0.9 \% \mathrm{NaCl} / 0.52^{\circ} \mathrm{C}=x / 0.16^{\circ} \mathrm{C}$
$\mathrm{X}=0.277 \% \mathrm{NaCl}$
$\mathrm{X} / 30 \mathrm{~mL}=0.277 \mathrm{gm} / 100 \mathrm{~mL}$
$X=0.083 \mathrm{gm}=83 \mathrm{mg}$

Osmolarity

> Measures osmotic concentration
> Nonelectrolytes (ex: dextrose)

- $1 \mathrm{mmol}=1 \mathrm{mOsmol}$
> Electrolytes (ex: NaCl)
- $1 \mathrm{mmol}=2 \mathrm{mOsmol}(\mathrm{Na} \& \mathrm{Cl})$

Wt. of substance
(g / L) m.w. (gm) X $\underset{\text { species }}{\# \text { of }} \times 1000=\mathrm{mOsmol} / \mathrm{L}$

33. How many milligrams of sodium chloride are needed to adjust 30 mL of a 4% cocaine HCl solution to isotonicity. The freezing point depression of a 1% solution of cocaine HCl is $0.09^{\circ} \mathrm{C}$.
a) 62
b) 83
c) 108
d) 120
e) 270
34. Estimate the milliosmolarity ($\mathrm{mOsm} / \mathrm{L}$) for normal saline $(\mathrm{Na}=23, \mathrm{Cl}=35.5)$.
a) $150 \mathrm{mOsm} / \mathrm{L}$
b) $300 \mathrm{mOsm} / \mathrm{L}$
c) $350 \mathrm{mOsm} / \mathrm{L}$
d) $400 \mathrm{mOsm} / \mathrm{L}$
e) $600 \mathrm{mOsm} / \mathrm{L}$
35. How many mL of isopropyl rubbing alcohol ($70 \% \mathrm{v} / \mathrm{v}$) will be needed to prepare one pint of 50% isopropyl alcohol?
a) 70
b) 170
c) 338
d) 400
e) 480
35. How many mL of isopropyl rubbing alcohol ($70 \% \mathrm{v} / \mathrm{v}$) will be needed to prepare one pint of 50% isopropyl alcohol?
a) 70
b) 170
c) 338
d) 400
e) 480
$X / 473 \mathrm{~mL}=50 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{X}=236.5 \mathrm{gm}$
$236.5 \mathrm{gm} / \mathrm{x}=70 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{X}=338 \mathrm{~mL}$
36. What is the percentage strength (w / v) of 50 mg of cefuroxime dissolved in water to make a 500 mL D5W solution?
a) 0.01%
b) 0.025%
c) 0.1%
d) 0.2%
e) 2.5%
$0.05 \mathrm{gm} / 500 \mathrm{~mL}=\mathrm{x} / 100 \mathrm{~mL}$
X $=0.01 \%$
37. What is the percentage strength (w/w) for zinc oxide if 20 grams are mixed with 80 grams of petrolatum?
a) 25%
b) 20%
c) 15%
d) 30%
e) 22.5%
37. What is the percentage strength (w / w) for zinc oxide if 20 grams are mixed with 80 grams of petrolatum?
a) 25%
b) 20%
c) 15%
d) 30%
e) 22.5%

$$
\begin{aligned}
& 20 \mathrm{gm} / 100 \mathrm{gm}=\mathrm{x} / 100 \mathrm{gm} \\
& x=20 \%
\end{aligned}
$$

38. What is the percentage strength of the final solution if 250 mL of 1% lidocaine is diluted in 500 mL ?
a) 0.5%
b) 1%
c) 1.5%
d) 2%
e) 5%
39. What is the percentage strength of the final solution if 250 mL of 1% lidocaine is diluted in 500 mL ?
a) 0.5%
b) 1%
c) 1.5%
d) 2%
e) 5%
$\mathrm{X} / 250 \mathrm{~mL}=1 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{X}=2.5 \mathrm{gm}$
$2.5 \mathrm{gm} / 500 \mathrm{~mL}=\mathrm{x} / 100 \mathrm{~mL} ; \mathrm{x}=0.5 \mathrm{gm}$
40. How many milliliters of water are needed to dilute 500 mL of 90% ethanol to a 50% concentration?
a) 400 mL
b) 500 mL
c) 600 mL
d) 800 mL
e) 900 mL
41. How many milliliters of water are needed to dilute 500 mL of 90% ethanol to a 50% concentration?
a) 400 mL
b) 500 mL
c) 600 mL
d) 800 mL
e) 900 mL
$90 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{x} / 500 \mathrm{~mL} ; \mathrm{X}=450 \mathrm{gm}$
$450 \mathrm{gm} / \times \mathrm{mL}=50 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{X}=900 \mathrm{~mL}$
$900 \mathrm{~mL}-500 \mathrm{~mL}=400 \mathrm{~mL}$
42. How many mEq of KCl are present in 200 mL of a $5 \% \mathrm{KCl}$ solution?
a) 1.34 mEq
b) 13.4 mEq
c) 100 mEq
d) 134.23 mEq
e) 200 mEq
43. How many mEq of KCl are present in 200 mL of a $5 \% \mathrm{KCl}$ solution?
a) 1.34 mEq
b) 13.4 mEq
c) 100 mEq
d) 134.23 mEq
e) 200 mEq
$5 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{X} / 200 \mathrm{~mL} ; \mathrm{X}=10 \mathrm{gm}$
$\mathrm{mEq}=(10,000 \mathrm{mg} \times 1) / 74.6 \mathrm{mg}=134 \mathrm{mEq}$
44. How many mOsm/L of KCl are present in 1000 mL of a 5% solution?
a) $13.42 \mathrm{mOsm} / \mathrm{L}$
b) $134.2 \mathrm{mOsm} / \mathrm{L}$
c) $342 \mathrm{mOsm} / \mathrm{L}$
d) $1342 \mathrm{mOsm} / \mathrm{L}$
e) $2345 \mathrm{mOsm} / \mathrm{L}$
45. How many mOsm/L of KCl are present in 1000 mL of a 5% solution?
a) $13.42 \mathrm{mOsm} / \mathrm{L}$
b) $134.2 \mathrm{mOsm} / \mathrm{L}$
c) $342 \mathrm{mOsm} / \mathrm{L}$
d) $1342 \mathrm{mOsm} / \mathrm{L}$
e) $2345 \mathrm{mOsm} / \mathrm{L}$
$5 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{X} / 1000 \mathrm{~mL} ; \mathrm{X}=50 \mathrm{gm}$
50 gm X
$2 \times 1000=\mathrm{mOsmol} / \mathrm{L}$
74.6
46. How many milligrams of sodium chloride are required to make the following prescription?
> Cocaine HCl 10 mg
> Purified water qs 100 mL
> Sodium chloride qs to make an isotonic solution
a) 8.98 mg
b) 9.65 mg
c) 89.84 mg
d) 98.65 mg
e) 898.4 mg

Sodium Chloride equivalent of cocaine $=0.16$
900 mg of sodium chloride makes 100 mL isotonic Need to account for sodium equivalents of cocaine
$0.16 \times 10 \mathrm{mg}=1.6$
$900-1.6=898.4 \mathrm{mg}$
43. A 20\% fat emulsion yields $2.1 \mathrm{kcal} / \mathrm{mL}$.

How many mL will provide 1200 kilocalories?
a) 567 mL
b) 569 mL
c) 571 mL
d) 583 mL
e) 591 mL
43. A 20% fat emulsion yields $2.1 \mathrm{kcal} / \mathrm{mL}$. How many mL will provide 1200 kilocalories?
a) 567 mL
b) 569 mL
c) 571 mL
d) 583 mL
e) 591 mL
$2.1 \mathrm{kcal} / 1 \mathrm{~mL}=1200 \mathrm{kcal} / \mathrm{X}$
$\mathrm{X}=571 \mathrm{~mL}$
44. If the dose of a drug is 50 mcg , how many doses are contained in 0.035 g ?
a) 500 doses
b) 600 doses
c) 700 doses
d) 800 doses
e) 900 doses
44. If the dose of a drug is 50 mcg , how many doses are contained in 0.035 g ?
a) 500 doses
b) 600 doses
c) 700 doses
d) 800 doses
e) 900 doses
$0.035 \mathrm{gm}=35 \mathrm{mg}=35,000 \mathrm{mcg}$
$35,000 \mathrm{mcg} / 50 \mathrm{mcg}=700$ doses
45. How many milliliters of a liquid medicine would provide a patient with 2 tablespoonfuls twice a day for 5 days?
a) 300 mL
b) 350 mL
c) 400 mL
d) 450 mL
e) 500 mL
45. How many milliliters of a liquid medicine would provide a patient with 2 tablespoonfuls twice a day for 5 days?
a) 300 mL
b) 350 mL
c) 400 mL
d) 450 mL
e) 500 mL

2 tablespoons BID $=60 \mathrm{~mL} /$ day
$60 \times 5=300 \mathrm{~mL}$
46. Calculate the rate for a child ($\mathrm{Wt}=22 \mathrm{~kg}$) receiving fentanyl ($100 \mathrm{mcg} / 2 \mathrm{~mL}$) $3 \mathrm{mcg} / \mathrm{kg} / \mathrm{hr}$?
a) $1.3 \mathrm{~mL} / \mathrm{hr}$
b) $1.7 \mathrm{~mL} / \mathrm{hr}$
c) $2.1 \mathrm{~mL} / \mathrm{hr}$
d) $2.6 \mathrm{~mL} / \mathrm{hr}$
e) $3.0 \mathrm{~mL} / \mathrm{hr}$
46. Calculate the rate for a child ($\mathrm{Wt}=22 \mathrm{~kg}$) receiving fentanyl ($100 \mathrm{mcg} / 2 \mathrm{~mL}$) $3 \mathrm{mcg} / \mathrm{kg} / \mathrm{hr}$?
a) $1.3 \mathrm{~mL} / \mathrm{hr}$
b) $1.7 \mathrm{~mL} / \mathrm{hr}$
c) $2.1 \mathrm{~mL} / \mathrm{hr}$
d) $2.6 \mathrm{~mL} / \mathrm{hr}$
e) $3.0 \mathrm{~mL} / \mathrm{hr}$
$22 \mathrm{~kg} \times 3 \mathrm{mcg} / \mathrm{kg} / \mathrm{hr}=66 \mathrm{mcg} / \mathrm{hr}$
$66 \mathrm{mcg} / \mathrm{hr} / 50 \mathrm{mcg} / \mathrm{mL}=1.3 \mathrm{~mL} / \mathrm{hr}$
47. How many milligrams of mercury bichloride are needed to make 200 mL of a 1:500 w/v solution?
a) 100 mg
b) 200 mg
c) 300 mg
d) 400 mg
e) 500 mg
47. How many milligrams of mercury bichloride are needed to make 200 mL of a $1: 500 \mathrm{w} / \mathrm{v}$ solution?
a) 100 mg
b) 200 mg
c) 300 mg
d) 400 mg
e) 500 mg
$1 \mathrm{gm} / 500 \mathrm{~mL}=\mathrm{x} / 200 \mathrm{~mL}$
$X=0.4 \mathrm{gm}=400 \mathrm{mg}$
48. How many grams of dextrose (molecular weight 180) would be needed to provide 120 mOsm ?
a) 20.7 g
b) 21.3 g
c) 21.6 g
d) 22.3 g
e) 23.1 g
48. How many grams of dextrose (molecular weight 180) would be needed to provide 120 mOsm?
a) 20.7 g
b) 21.3 g
c) 21.6 g
d) 22.3 g
e) 23.1 g

\qquad | X gm | 180 | $\times 1000=\begin{array}{l}120 \\ \mathrm{mOsmol} / \mathrm{L}\end{array}$ |
| :---: | :---: | :---: |

X gm	180	$\times 1000=\begin{array}{l}120 \\ \mathrm{mOsmol} / \mathrm{L}\end{array}$

X gm	180	$\times 1000=\begin{array}{l}120 \\ \mathrm{mOsmol} / \mathrm{L}\end{array}$

X gm	180	$\times 1000=\begin{array}{l}120 \\ \mathrm{mOsmol} / \mathrm{L}\end{array}$

| X gm | |
| :---: | :---: | :---: |
| 180 | $\times 1000=\begin{array}{l}120 \\ \mathrm{mOsmol} / \mathrm{L}\end{array}$ |

49. How many liters of a $2.5 \% \mathrm{w} / \mathrm{v}$ solution can be prepared using 42.5 g of solute?
a) 1.42 L
b) 1.7 L
c) 1.9 L
d) 2.1 L
e) 2.3 L
50. How many liters of a $2.5 \% \mathrm{w} / \mathrm{v}$ solution can be prepared using 42.5 g of solute?
a) 1.42 L
b) 1.7 L
c) 1.9 L
d) 2.1 L
e) 2.3 L
$2.5 \mathrm{gm} / 100 \mathrm{~mL}=42.5 \mathrm{gm} / \mathrm{X}$
$\mathrm{X}=1.7 \mathrm{~L}$
51. The usual dose of sulfamethoxazole/trimethoprim (Bactrim ${ }^{\circledR}$) is 150 mg TMP/m2/day in divided doses every 12 hours for PCP prophylaxis. What would be the usual dose for SG who is a 2 year old male ($\mathrm{Wt}=12 \mathrm{~kg}, \mathrm{Ht}=34^{\prime \prime}$)?
a) 5 mg
b) 10 mg
c) 20 mg
d) 40 mg
e) 80 mg

50. The usual dose of

sulfamethoxazole/trimethoprim (Bactrim®) is
150 mg TMP/m2/day in divided doses every 12 hours for PCP prophylaxis. What would be the usual dose for SG who is a 2 year old male
($\mathrm{Wt}=12 \mathrm{~kg}, \mathrm{Ht}=34^{\prime \prime}$)?
a) 5 mg
b) 10 mg
c) 20 mg
d) 40 mg
e) 80 mg
$34^{\prime \prime}=86.36 \mathrm{~cm}$
BSA $=\sqrt{ }[(86.36 \times 12) / 3600]=0.54 \mathrm{~m}^{2}$
$0.54 \mathrm{~m}^{2} \times 150=81 \mathrm{mg} /$ day $=40 \mathrm{mg} \mathrm{BID}$
51. A patient is to receive 2000 mL of a solution by intravenous infusion over a period of 24 hours. What rate or infusion (drops/minute) should be utilized if $1 \mathrm{~mL}=20$ drops?
a) 26 drops/minute
b) 28 drops/minute
c) 30 drops/minute
d) 32 drops/minute
e) 40 drops/minute
51. A patient is to receive 2000 mL of a solution by intravenous infusion over a period of 24 hours. What rate or infusion (drops/minute) should be utilized if $1 \mathrm{~mL}=20$ drops?
a) 26 drops/minute
b) 28 drops/minute
c) 30 drops/minute
d) 32 drops/minute
e) 40 drops/minute

$\frac{2000}{\mathrm{~mL}}$
24 hrs
:---
\min
:---
drops
1 mL
:---
drops
$/ \mathrm{min}$

52. A prescription calls for 24 mmol of potassium chloride. How many grams of KCl are required (molecular weight $\mathrm{KCl}=74.6$)?
a) 1.73 g
b) 1.79 g
c) 1.84 g
d) 1.93 g
e) 2.12 g
$\mathrm{MW} \mathrm{KCl}=74.6$
1 mole $=74.6 \mathrm{gm}$
$1 \mathrm{mmol}=0.0746 \mathrm{gm}$
$0.0746 \mathrm{gm} / 1 \mathrm{mmol}=\mathrm{X} / 24 \mathrm{mmol}$
$X=1.79 \mathrm{gm}$
53. A TPN formula for $2 L$ is to contain 25% dextrose. What volume of 70% dextrose injection will supply the needed sugar?
a) 685 mL
b) 700 mL
c) 714 mL
d) 719 mL
e) 725 mL
54. A TPN formula for 2 L is to contain 25% dextrose. What volume of 70% dextrose injection will supply the needed sugar?
a) 685 mL
b) 700 mL
c) 714 mL
d) 719 mL
e) 725 mL
$25 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{X} / 2000 \mathrm{~mL} ; \mathrm{X}=500 \mathrm{gm}$ $500 \mathrm{gm} / \mathrm{x} \mathrm{mL}=70 \mathrm{gm} / 100 \mathrm{~mL} ; \mathrm{X}=714 \mathrm{~mL}$
55. A pharmacist combines 140 mL of a 0.9\% sodium chloride solution with 250 mL of a 3.4% sodium chloride solution. Calculate the percentage strength of the final mixture.
a) 1.75%
b) 2%
c) 2.25%
d) 2.45%
e) 2.5%
56. A pharmacist combines 140 mL of a 0.9% sodium chloride solution with 250 mL of a 3.4% sodium chloride solution. Calculate the percentage strength of the final mixture.
a) 1.75%
b) 2%
c) 2.25%
d) 2.45%
e) 2.5%
$0.9 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{X} / 140 \mathrm{~mL} ; \mathrm{X}=1.26 \mathrm{gm}$
$3.5 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{X} / 250 \mathrm{~mL} ; \mathrm{X}=8.75 \mathrm{gm}$
$8.75 \mathrm{gm}+1.26 \mathrm{gm}=10.01 \mathrm{gm}$
$140 \mathrm{~mL}+250 \mathrm{~mL}=390 \mathrm{~mL}$
$10.01 \mathrm{gm} / 390 \mathrm{~mL}=\mathrm{X} / 100 \mathrm{~mL}$
X = 2.5\%
57. If city water contains 2.5 ppm of NaF , calculate the number of milliequivalents of fluoride ingested by a person who drinks 1.5 L of water (molecular weight of $\mathrm{NaF}=42$).
a) 0.073 mEq
b) 0.075 mEq
c) 0.079 mEq
d) 0.089 mEq
e) 0.090 mEq
58. If city water contains 2.5 ppm of NaF , calculate the number of milliequivalents of fluoride ingested by a person who drinks 1.5 L of water (molecular weight of $\mathrm{NaF}=42$).
a) 0.073 mEq
b) 0.075 mEq
c) 0.079 mEq
d) 0.089 mEq
e) 0.090 mEq

$$
\begin{aligned}
& 2.5 \text { parts } / 1,000,000=X / 100 ; X=0.00025 \% \\
& 0.00025 \mathrm{gm} / 100 \mathrm{~mL}=\mathrm{X} / 1500 \mathrm{~mL} ; X=0.00375 \mathrm{gm} \\
& 1 \mathrm{mEq}=42 \mathrm{mg} \\
& 1 \mathrm{mEq} / 42 \mathrm{mg}=\mathrm{X} / 3.75 \mathrm{mg} ; X=0.089 \mathrm{mEq}
\end{aligned}
$$

